МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Кировской области МУ управление образования администрации Кумёнского района Кировской области МКОУ СОШ п.Вичёвщина

PACCMOTPEHO:	СОГЛАСОВАНО	УТВЕРЖДено:	
ШМО естественного-	зам. директора по УВР	Директор	
научного			
цикла	Шабалина Л.А.	Иванцова Л.А.	
Шабалина Л.А.	Протокол № 87	Приказ №37/1	
	« 29 » августа 2023 г.	« 29 » августа 2023 г	

Рабочая программа по предмету «Химия» (предметная область «Естественные науки»)

от «29» августа 2023 г.

для 8-9 класса на 2023-2024 учебный год (базовый уровень)

> Составитель программы: учитель химии Сушенцова Марина Павловна

Ввеление

Основой для разработки рабочей программы по химии для 8-9 классов послужили:

1 Федеральный государственный образовательный стандарт среднего общего образования (ФГОС СОО), утвержденный

Приказом Министерства просвещения Российской Федерации от 12.08.2022 № 732 «О внесении изменений в федеральный государственный образовательный стандарт среднего общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 мая 2012г.№413» (Зарегистрирован 12.09.2022 № 70034)

Федеральный государственный образовательный стандарт основного общего образования (ФГОС ООО), утвержденный Приказом Министерства просвещения Российской Федерации от 31.05.2021 N 287 (ред. от 18.07.2022) "Об утверждении федерального государственного образовательного стандарта основного общего образования" (Зарегистрировано в Минюсте России 05.07.2021 N 64101)

Федеральный государственный образовательный стандарт начального общего образования (ФГОС ООО), утвержденный Приказом Министерства просвещения Российской Федерации от 31.05.2021 № 286

"Об утверждении федерального государственного образовательного стандарта начального общего образования"

(Зарегистрирован 05.07.2021 № 64100)

- 2 Примерная программа основного общего образования по химии (базовый уровень). (Химия. Естествознание. Содержание образования: Сборник нормативно-правовых документов и методических материалов. М.: Вентана Граф, 2007. 192 с. (современное образование)).
- 3 Авторская программа О. С. Габриеляна, А. В. Купцовой. Программа основного общего образования по химии. 8—9 классы. М: Дрофа, 2015 г.
- 4 Требования образовательной программы ООО МКОУ СОШ п. Вичёвщина.

На изучение предмета отводится 2 часа в неделю (34 уч. недели) — 68 часов за учебный год. В 8 и 9 классах.

Общая характеристика учебного предмета «химия»

Вклад учебного предмета «Химия» в достижение целей основного общего

образования обусловлен во многом значением химической науки в познании законов природы, в развитии производительных сил общества и создании новой базы матери- альной культуры.

Химия как элемент системы естественных наук распространила своё влияние на все области человеческого существования, задала новое видение мира, стала неотъемлемым компонентом мировой культуры, необходимым условием жизни общества: знание химии служит основой для формирования мировоззрения человека, его представлений о материальном единстве мира; важную роль играют формируемые химией представления о взаимопревращениях энергии и об эволюции веществ в природе; современная химия направлена на решение глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой и экологической безопасности, проблем здравоохранения.

В условиях возрастающего значения химии в жизни общества существенно повысилась роль химического образования. В плане социализации оно является одним из условий формирования интеллекта личности и гармоничного её развития.

Современному человеку химические знания необходимы для приобретения общекультурного уровня, позволяющего уверенно трудиться в социуме и ответственно участвовать в многообразной жизни общества, для осознания важности разумного отношения к своему здоровью и здоровью других, к окружающей природной среде, для грамотного поведения при использовании различных материалов и химических веществ в повседневной жизни.

Химическое образование в основной школе является базовым по отношению к системе общего химического образования. Поэтому на соответствующем ему уровне оно реализует присущие общему химическому образованию ключевые ценности, кото- рые отражают государственные, общественные и индивидуальные потребности. Этим определяется сущность общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета «Химия».

Изучение предмета: 1) способствует реализации возможностей для саморазвития и формирования культуры личности, её общей и функциональной грамотности;

- 2) вносит вклад в формирование мышления и творческих способностей подростков, навыков их самостоятельной учебной деятельности, экспериментальных и исследовательских умений, необходимых как в повседневной жизни, так и в профессиональной деятельности;
- 3) знакомит со спецификой научного мышления, закладывает основы целостного взгляда на единство природы и человека, яв- ляется ответственным этапом в формировании естественно-научной грамотности подростков; 4) способствует формированию ценностного отношения к естественно-научным знаниям, к природе, к человеку, вносит свой вклад в экологическое образование школьников.

Названные направления в обучении химии обеспечиваются спецификой содержания предмета, который является педагогически адаптированным отражением базовой науки химии на определённом этапе её развития.

Курс химии основной школы ориентирован на освоение обучающимися основ неорганической химии и некоторых понятий и сведений об отдельных объектах органической химии .

Структура содержания предмета сформирована на основе си- стемного подхода

к его изучению . Содержание складывается из системы понятий о химическом элементе и веществе и системы понятий о химической реакции . Обе эти системы структурно организованы по принципу последовательного развития знаний на основе теоретических представлений разного уровня: атомно-молекулярного учения как основы всего естествознания, уровня Периодического закона Д . И . Менделеева как основного закона химии, учения о строении атома и химической связи, представлений об электролитической диссоциации веществ в растворах . Теоретические знания рассматриваются на основе эмпирически полученных и осмысленных фактов, развиваются последовательно от одного уровня к другому, выполняя функ- ции объяснения и прогнозирования свойств, строения и возможностей практического применения и получения изучаемых веществ .

Такая организация содержания курса способствует представ- лению химической составляющей научной картины мира в логике её системной природы . Тем самым обеспечивается возможность формирования у обучающихся ценностного отношения к научному знанию и методам познания в науке . Важно также заметить, что освоение содержания курса происходит с привлечением знаний из ранее изученных курсов: «Окружающий мир», «Биология . 5—7 классы» и «Физика . 7 класс» .

Цели изучения учебного предмета «химия»

К направлению первостепенной значимости при реализации образовательных функций предмета «Химия» традиционно относят формирование знаний основ химической науки как области современного естествознания, практической деятельности человека и как одного из компонентов мировой культуры . Зада- ча предмета состоит в формировании системы химических знаний — важнейших фактов, понятий, законов и теоретических положений, доступных обобщений мировоззренческого характера, языка науки, знаний о научных методах изучения веществ и химических реакций, а также в формировании и развитии умений и способов деятельности, связанных с планированием, наблюдением и проведением химического эксперимента, соблюдением правил безопасного обращения с веществами в по- вседневной жизни .

Наряду с этим цели изучения предмета в программе уточнены и скорректированы с учётом новых приоритетов в системе основного общего образования. Сегодня в образовании особо значимой признаётся направленность обучения на развитие и саморазвитие личности, формирование её интеллекта и общей культуры. Обучение умению учиться и продолжать своё образо- вание самостоятельно становится одной из важнейших функ- ций учебных предметов.

В связи с этим при изучении предмета в основной школе доминирующее значение приобрели такие цели, как:

- 1. формирование интеллектуально развитой личности, готовой к самообразованию, сотрудничеству, самостоятельному при- нятию решений, способной адаптироваться к быстро меняю- щимся условиям жизни;
- 2. направленность обучения на систематическое приобщение учащихся к самостоятельной познавательной деятельности, научным методам познания, формирующим мотивацию и развитие способностей к химии;
- 3. обеспечение условий, способствующих приобретению обучающимися опыта разнообразной деятельности, познания и смопознания, ключевых навыков

(ключевых компетенций), имеющих универсальное значение для различных видов деятельности;

- 4. формирование умений объяснять и оценивать явления окру- жающего мира на основании знаний и опыта, полученных при изучении химии;
- 5. формирование у обучающихся гуманистических отношений, понимания ценности химических знаний для выработки экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружаю- щей природной среды;
- 6. развитие мотивации к обучению, способностей к самоконтро- лю и самовоспитанию на основе усвоения общечеловеческих ценностей, готовности к осознанному выбору профиля и на- правленности дальнейшего обучения.

Место учебного предмета «химия» в учебном плане

В системе общего образования «Химия» признана обязатель- ным учебным предметом, который входит в состав предметной области «Естественно-научные предметы».

Учебным планом на её изучение отведено 136 учебных ча- сов — по 2 ч в неделю в 8 и 9 классах соответственно .

Для каждого класса предусмотрено резервное учебное время, которое может быть использовано участниками образовательного процесса в целях формирования вариативной составляющей содержания конкретной рабочей программы. При этом обязательная (инвариантная) часть содержания предмета, уста- новленная примерной рабочей программой, и время, отводимое на её изучение, должны быть сохранены полностью.

В структуре примерной рабочей программы наряду с пояснительной запиской выделены следующие разделы:

- планируемые результаты освоения учебного предмета «Химия» личностные, метапредметные, предметные;
- содержание учебного предмета «Химия» по годам обучения;
- примерное тематическое планирование, в котором детализировано содержание каждой конкретной темы, указаны коли- чество часов, отводимых на её изучение, и основные виды учебной деятельности ученика, формируемые при изучении темы, приведён перечень демонстраций, выполняемых учителем, и перечень рекомендуемых лабораторных опытов и практических работ, выполняемых учащимися.

Содержание учебного предмета

Введение. Первоначальные химические понятия (8 часов)

Предмет химии, методы познания в химии: наблюдение, эксперимент, моделирование. Источники химической информации, ее получение, анализ и представление его результатов.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах

Превращения веществ. Отличие химических реакций от физических явлений.

Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки – работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты.

Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Расчетные задачи

- 1. Нахождение относительной молекулярной массы вещества по его химической формуле.
- 2. Вычисление массовой доли химического элемента в веществе по его формуле.

Демонстрации

- 1. Модели (шаростержневые и Стюарта Бриглеба) различных простых и сложных веществ.
- 2. Коллекция стеклянной химической посуды.
- 3. Коллекция материалов и изделий на основе алюминия.
- 4. Взаимодействие мрамора с кислотой и помутнение известковой воды.

Лабораторные опыты

- 1. Сравнение свойств твердых кристаллических веществ и растворов.
- 2. Сравнение скорости испарения воды, одеколона и этилового спирта с фильтровальной бумаги.

Практическая работа № 1

«Правила техники безопасности при работе в химическом кабинете. Лабораторное оборудование и обращение с ним».

Тема 1. Атомы химических элементов (9 часов)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома - образование новых химических элементов.

Изменение числа нейтронов в ядре атома - образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных уровней атомов химических элементов малых периодов периодической системы Д. И. Менделеева. Понятие о завершенном и

незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента - образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь.

Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой - образование бинарных соединений неметаллов.

Электроотрицательность. Понятие о ковалентной полярной связи. Понятие о валентности как свойстве атомов образовывать ковалентные химические связи. Составление формул бинарных соединений по валентности.

Взаимодействие атомов химических элементов-металлов между собой образование металлических кристаллов. Понятие о металлической связи.

Демонстрации

Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

Лабораторные опыты

- 3. Моделирование принципа действий сканирующего микроскопа.
- 4. Изготовление моделей бинарных соединений.
- 5. Ознакомление с коллекциями металлов.

Тема 2. Простые вещества (7 часов)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества - металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества-неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Молекулы простых веществ-неметаллов: водорода, кислорода, азота, галогенов.

Относительная молекулярная масса.

Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Число Авогадро. Количество вещества. Моль. Молярная масса.

Молярный объем газообразных веществ. Кратные единицы количества вещества – миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Расчетные задачи

- 1. Вычисление молярной массы веществ по химическим формулам.
- 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Демонстрации. Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

Лабораторные опыты

- 6. Ознакомление с коллекциями неметаллов.
- 7. Ознакомление с коллекциями оксидов.

Тема 3. Соединения химических элементов (14 часов)

Степень окисления. Сравнение степени окисления и валентности.

Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния.

Бинарные соединения металлов и неметаллов: оксиды, хлориды, сульфиды и др. Составление их формул.

Бинарные соединения неметаллов: оксиды, летучие водородные соединения, их состав. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде.

Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях.

Индикаторы. Изменение окраски индикаторов в щелочной среде.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Понятие о шкале кислотности — шкала-рН. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия.

Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток. Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчёты, связанные с использованием понятия доля

Расчетные задачи

- 1. Расчет массовой и объемной долей компонентов смеси веществ.
- 2. Вычисление массовой доли вещества в растворе по известной массе

растворенного вещества и массе растворителя.

3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Кислотно-щелочные индикаторы, изменение окраски в различных средах. Универсальный индикатор и изменение его окраски в различных средах.

Лабораторные опыты.

- 8. Ознакомление со свойствами аммиака.
- 9. Качественные реакции на углекислый газ.
- 10. Определение рН растворов кислоты. Щелочи и воды.
- 11. Определение рН растворов лимонного и яблочного соков на срезе плодов.
- 12. Ознакомление с коллекциями солей.
- 13. Ознакомление с коллекцией веществ с разным типом кристаллической решетки. Изготовление моделей, кристаллических решеток Практическая работа №2 «Очистка загрязненной поваренной соли» Практическая работа №3 «Приготовление раствора с определенной массовой долей растворенного вещества»
 - 14. Ознакомление с образцами горной породы.

Тема 4. Изменения, происходящие с веществами (11 часов)

Понятие явлений как изменений, происходящих с веществами.

Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, - химические реакции.

Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций. Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству

вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций.

Катализаторы. Ферменты.

Реакции соединения. Каталитические и некаталитические реакции.

Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в

растворах до конца. Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения — электролиз воды. Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды».

Реакции замещения – взаимодействие воды со щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Расчетные задачи

- 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции.
- 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей.
- 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Демонстрации. Примеры физических явлений

- 1. Плавление парафина.
- 2. Возгонка йода или бензойной кислоты.
- 3. Растворение окрашенных солей.
- 4. Диффузия душистых веществ с горящей лампочки накаливания.

Примеры химических явлений:

- а) горение магния;
- б) взаимодействие соляной кислоты с мрамором или мелом;
- в) получение гидроксида меди (II);
- г) растворение полученного гидроксида в кислотах;
- д) взаимодействие оксида меди (II) с серной кислотой при нагревании;
- е) разложение перманганата калия;
- ж) взаимодействие разбавленных кислот с металлами.

Разложение пероксида водорода помощью диоксида марганца и каталазы картофеля или моркови.

Лабораторные опыты

- 15. Прокаливание меди в пламени спиртовки или горелки.
- 16. Замещение меди в растворе хлорида меди (II) железом.

Тема 5. Растворение. Растворы. Реакции ионного обмена и окислительновосстановительные реакции. (18 часов)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и не электролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с металлами и оксидами металлов. Взаимодействие кислот с основаниями - реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании.

Соли, их классификация и диссоциация в свете ТЭД. различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ

Окислительно-восстановительные реакции.

Определение степени окисления для элементов, образующих вещества разных классов. Реакции ионного обмена и OBP. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ - металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Демонстрации. Испытание веществ и их растворов на электропроводность. Зависимость электропроводности уксусной кислоты от концентрации.

Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния.

Лабораторные опыты

- 17. Взаимодействие растворов хлорида натрия и нитрата серебра.
- 18. Получение и свойства нерастворимого основания, например гидроксида меди (II).
 - 19. Взаимодействие кислот с основаниями.
 - 20. Взаимодействие кислот с оксидами металлов.
 - 21. Взаимодействие кислот с металлами.
 - 22. Взаимодействие кислот с солями.

- 23. Взаимодействие щелочей с кислотами.
- 24. Взаимодействие щелочей с оксидами неметаллов.
- 25. Взаимодействие щелочей с солями.
- 26. Получение и свойства нерастворимых оснований.
- 27. Взаимодействие основных оксидов с кислотами.
- 28. Взаимодействие основных оксидов с водой.
- 29. Взаимодействие кислотных оксидов со щелочью.
- 30. Взаимодействие кислотных оксидов с водой.
- 31. Взаимодействие солей с кислотами.
- 32. Взаимодействие солей с щелочами.
- 33. Взаимодействие солей с солями.
- 34. Взаимодействие растворов солей с металлами.

Практическая работа №4 «Свойства кислот, оснований, оксидов и солей» **Практическая работа №5** «Решение экспериментальных задач».

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Тема 1. Общая характеристика химических элементов и химических реакций (10 часов)

Периодический закон и периодическая система химических элементов Д. И. Менделеева в свете учения о строении атома. Их значение. Характеристика элемента по его положению в периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и процессов окисления-восстановления. Генетические ряды металла и неметалла. Характеристика химического элемента по кислотно-основным свойствам образуемых им соединений.

Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента. Амфотерные оксиды и гидроксиды. Химическая организация природы. Химические реакции. Скорость химической реакции. Катализаторы и катализ.

Лабораторные опыты. 1. Получение гидроксида цинка и исследование его свойств. 2. Моделирование построения периодической системы Д. И. Менделеева. 3. Замещение железом меди в растворе сульфата меди (II). 4. Зависимость скорости химической реакции от природы реагирующих веществ на примере взаимодействия кислот с металлами. 5. Зависимость скорости химической реакции от концентрации реагирующих веществ на примере взаимодействия цинка с соляной кислотой различной концентрации. 6. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ. 7. Моделирование «кипящего слоя». 8. Зависимость скорости химической реакции от температуры реагирующих веществ на примере взаимодействия оксида меди (II) с раствором серной кислоты различной температуры. 9. Разложение пероксида водорода с помощью оксида марганца (IV). 10. Обнаружение каталазы в пищевых продуктах. 11. Ингибирование взаимодействия кислот с металлами уротропином.

Тема 2. Металлы (17 часов)

Положение металлов в Периодической системе химических элементов Д. И.

Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей, а также в свете их положения в электрохимическом ряду напряжений металлов. Коррозия металлов и способы борьбы с ней. Металлы в природе. Общие способы их получения.

Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества. Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы — простые вещества. Важнейшие соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты, фосфаты), их свойства и применение в народном хозяйстве.

Алюминий. Строение атома, физические и химические свойства простого вещества. Соединения алюминия — оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Железо. Строение атома, физические и химические свойства простого вещества. Генетические ряды Fe2+ и Fe3+. Важнейшие соли железа. Значение железа и его соединений для природы и народного хозяйства.

Демонстрации. Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гидроксидов железа (II) и (III).

Лабораторные опыты. 12. Взаимодействие растворов кислот и солей с металлами. 13. Ознакомление с рудами железа. 14. Окрашивание пламени солями щелочных металлов. 15. Получение гидроксида кальция и исследование его свойств. 16. Получение гидроксида алюминия и исследование его свойств. 17. Взаимодействие железа с соляной кислотой. 18. Получение гидроксидов железа (II) и (III) и изучение их свойств.

Тема 2. Практикум 1. Свойства металлов и их соединений

1. Экспериментальные задачи по распознаванию и получению соединений металлов.

Тема 3. Неметаллы (25 часов)

Общая характеристика неметаллов: положение в Периодической системе химических элементов Д. И. Менделеева, особенности строения атомов, электроотрицательность (ЭО) как мера «неметалличности», ряд ЭО. Кристаллическое строение неметаллов — простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл» и «неметалл».

Водород. Положение водорода в Периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Вода. Строение молекулы. Водородная химическая связь. Физические свойства воды. Аномалии свойств воды. Гидрофильные и гидрофобные вещества. Химические свойства воды. Круговорот воды в природе. Водоочистка. Аэрация

воды. Бытовые фильтры. Минеральные воды. Дистиллированная вода, ее получение и применение.

Общая характеристика галогенов. Строение атомов. Простые вещества и основные соединения галогенов, их свойства. Краткие сведения о хлоре, броме, фторе и иоде. Применение галогенов и их соединений в народном хозяйстве.

Сера. Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (IV) и (VI), их получение, свойства и применение. Серная кислота и ее соли, их применение в народном хозяйстве. Производство серной кислоты.

Азот. Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV). Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

Фосфор. Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V) и ортофосфорная кислота, фосфаты. Фосфорные удобрения.

Углерод. Строение атома, аллотропия, свойства модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека.

Кремний. Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

Демонстрации. Образцы галогенов — простых веществ. Взаимодействие галогенов с натрием, с алюминием. Вытеснение хлором брома или йода из растворов их солей. Взаимодействие серы с металлами, водородом и кислородом. Взаимодействие концентрированной азотной кислоты с медью. Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты. 19. Получение и распознавание водорода. 20. Исследование поверхностного натяжения воды. 21. Растворение перманганата калия или медного купороса в воде. 22. Гидратация обезвоженного сульфата меди (II). 23. Изготовление гипсового отпечатка. 24. Ознакомление с коллекцией бытовых фильтров. 25. Ознакомление с составом минеральной воды. 26. Качественная реакция на галогенид-ионы. 27. Получение и распознавание кислорода. 28. Горение серы на воздухе и в кислороде. 29. Свойства разбавленной серной кислоты. 30. Изучение свойств аммиака. 31. Распознавание солей аммония. 32. Свойства разбавленной азотной кислоты. 33. Взаимодействие концентрированной азотной кислоты с медью. 34. Горение фосфора на воздухе и в кислороде. 35. Распознавание фосфатов. 36. Горение угля в кислороде. 37. Получение угольной кислоты и изучение ее свойств. 38. Переход карбонатов в гидрокарбонаты. 39. Разложение гидрокарбоната натрия. 40. Получение кремниевой кислоты и изучение ее свойств.

Тема 3. Практикум 2. Свойства соединений неметаллов

1. Решение экспериментальных задач по теме «Подгруппа галогенов». 2. Решение экспериментальных задач по теме «Подгруппа кислорода». 3. Получение, собирание и распознавание газов.

Тема 4. Органические соединения (8 часов)

Вещества органические и неорганические, относительность понятия «органические вещества». Причины многообразия органических соединений. Химическое строение органических соединений. Молекулярные и структурные формулы органических веществ.

Метан и этан: строение молекул. Горение метана и этана. Дегидрирование этана. Применение метана. Химическое строение молекулы этилена. Двойная связь. Взаимодействие этилена с водой. Реакции полимеризации этилена. Полиэтилен и его значение.

Понятие о предельных одноатомных спиртах на примерах метанола и этанола. Трехатомный спирт глицерин. Альдегиды. Одноосновные предельные карбоновые кислоты на примере уксусной кислоты. Ее свойства и применение. Стеариновая кислота как представитель жирных карбоновых кислот.

Реакции этерификации и понятие о сложных эфирах. Жиры как сложные эфиры глицерина и жирных кислот. Понятие об аминокислотах. Реакции поликонденсации. Белки, их строение и биологическая роль. Понятие об углеводах. Глюкоза, ее свойства и значение. Крахмал и целлюлоза (в сравнении), их биологическая роль.

Демонстрации. Модели молекул метана и других углеводородов. Взаимодействие этилена с бромной водой и раствором перманганата калия. Образцы этанола и глицерина. Качественная реакция на многоатомные спирты. Получение уксусно-этилового эфира. Омыление жира. Взаимодействие глюкозы с аммиачным раствором оксида серебра. Качественная реакция на крахмал. Доказательство наличия функциональных групп в растворах аминокислот. Горение белков (шерсти или птичьих перьев). Цветные реакции белков. Свойства глицерина. Взаимодействие глюкозы с гидроксидом меди (II) без нагревания и при нагревании. Взаимодействие крахмала с йодом.

Тема 5. Обобщение знаний по химии за курс основной школы (8 часов)

Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Физический смысл порядкового номера элемента, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов. Значение периодического закона. Виды химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ.

Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; наличие границы раздела фаз; тепловой эффект; изменение степеней окисления атомов; использование катализатора; направление протекания). Скорость химических реакций и факторы, влияющие на нее. Обратимость химических реакций и способы смещения химического равновесия.

Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксиды и гидроксиды (основания, кислоты, амфотерные гидроксиды), соли. Их состав, классификация и общие

химические свойства.

Итоговая контрольная работа.

Планируемые результаты освоения учебного предмета «химия» на уровне основного общего образования

Изучение химии в основной школе направлено на достижение обучающимися личностных, метапредметных и предметных результатов освоения учебного предмета .

Личностные результаты

Личностные результаты освоения программы основного общего образования достигаются в ходе обучения химии в единстве учебной и воспитательной деятельности Организации в соответствии с традиционными российскими социокультурными и духовно-нравственными ценностями, принятыми в обществе правилами и нормами поведения и способствуют процессам самопознания, саморазвития и социализации обучающихся.

Личностные результаты отражают сформированность, в том числе в части: Патриотического воспитания

1) ценностного отношения к отечественному культурному, историческому и научному наследию, понимания значения химической науки в жизни современного общества, способности владеть достоверной информацией о передовых достижениях и открытиях мировой и отечественной химии, заинтересованности в научных знаниях об устройстве мира и общества;

Гражданского воспитания

2) представления о социальных нормах и правилах межлич- ностных отношений в коллективе, коммуникативной компетентности в общественно полезной, учебно-исследовательской, творческой и других видах деятельности; готовности к разно- образной совместной деятельности при выполнении учебных, познавательных задач, выполнении химических экспериментов, создании учебных проектов, стремления к взаимопониманию и взаимопомощи в процессе этой учебной деятельности; готовности оценивать своё поведение и поступки своих товарищей с позиции нравственных и правовых норм с учётом осознания последствий поступков;

Ценности научного познания

- 3) мировоззренческих представлений о веществе и химической реакции, соответствующих современному уровню развития науки и составляющих основу для понимания сущности научной картины мира; представлений об основных закономерностях развития природы, взаимосвязях человека с природной средой, о роли химии в познании этих закономерностей;
- 4) познавательных мотивов, направленных на получение новых знаний по химии, необходимых для объяснения наблюдае- мых процессов и явлений;
- 5) познавательной, информационной и читательской культуры, в том числе навыков самостоятельной работы с учебными текстами, справочной литературой, доступными техническими средствами информационных технологий;
- 6) интереса к обучению и познанию, любознательности, готовности и способности к самообразованию, проектной и исследовательской деятельности, к осознанному выбору направленности и уровня обучения в дальнейшем;

Формирования культуры здоровья

7) осознания ценности жизни, ответственного отношения к своему

здоровью, установки на здоровый образ жизни, осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения), необходимости соблюдения правил безопасности при обращении с химическими веществами в быту и реальной жизни;

Трудового воспитания

8) интереса к практическому изучению профессий и труда раз- личного рода, уважение к труду и результатам трудовой деятель- ности, в том числе на основе применения предметных знаний по химии, осознанного выбора индивидуальной траектории продол- жения образования с учётом личностных интересов и способно- сти к химии, общественных интересов и потребностей; успешной профессиональной деятельности и развития необходимых уме- ний; готовность адаптироваться в профессиональной среде;

Экологического воспитания

- 9) экологически целесообразного отношения к природе как источнику жизни на Земле, основе её существования, понима- ния ценности здорового и безопасного образа жизни, ответствен- ного отношения к собственному физическому и психическому здоровью, осознания ценности соблюдения правил безопасного поведения при работе с веществами, а также в ситуациях, угрожающих здоровью и жизни людей;
- 10) способности применять знания, получаемые при изуче- нии химии, для решения задач, связанных с окружающей при- родной средой, повышения уровня экологической культуры, осознания глобального характера экологических проблем и пу- тей их решения посредством методов химии;
- 11) экологического мышления, умения руководствоваться им в познавательной, коммуникативной и социальной практике.

Метапредметные результаты

метапредметных результатов выделяют составе значимые формирования мировоззрения общенаучные понятия (за- кон, теория, принцип, гипотеза, факт, система, процесс, экспе- римент и др.), которые используются в естественно-научных учебных предметах и позволяют на основе знаний из этих пред- метов формировать представление о целостной научной карти- не мира, и универсальные учебные действия (познавательные, коммуникативные, регулятивные), обеспечивают мирование которые форсамостоятельному планированию и осуществлению учебной деятельности.

Метапредметные результаты освоения образовательной про- граммы по химии отражают овладение универсальными позна- вательными действиями, в том числе:

Базовыми логическими действиями

1) умением использовать приёмы логического мышления при освоении знаний: раскрывать смысл химических понятий (выделять их характерные признаки, устанавливать взаимо- связь с другими понятиями), использовать понятия для объяс- нения отдельных фактов и явлений; выбирать основания и критерии для классификации химических веществ и химиче- ских реакций; устанавливать причинно-следственные связи между объектами изучения; строить

логические рассуждения (индуктивные, дедуктивные, по аналогии); делать выводы и за- ключения;

умением применять в процессе познания понятия (пред- метные и метапредметные), символические (знаковые) модели, используемые в химии, преобразовывать широко применяемые в химии модельные представления химический знак (символ элемента), химическая формула и уравнение химической реак- ции — при решении учебно-познавательных задач; с учётом этих модельных представлений выявлять и характеризовать су- щественные признаки изучаемых объектов — химических веществ и химических реакций; общие закономерно- сти, причинно-следственные противоречия в изучаемых процессах и явлениях; предлагать критерии выявления этих закономерностей и противоречий; самостоятельно выби- рать способ решения учебной задачи (сравнивать несколько ва- риантов решения, выбирать наиболее подходящий с учётом са- мостоятельно выделенных критериев);

Базовыми исследовательскими действиями

- 3) умением использовать поставленные вопросы в качестве инструмента познания, а также в качестве основы для форми- рования гипотезы по проверке правильности высказываемых суждений;
- 4) приобретение опыта по планированию, организации и про- ведению ученических экспериментов: умение наблюдать за хо- дом процесса, самостоятельно прогнозировать его результат, формулировать обобщения и выводы по результатам проведён- ного опыта, исследования, составлять отчёт о проделанной ра- боте;

Работой с информацией

- 5) умением выбирать, анализировать и интерпретировать ин- формацию различных видов и форм представления, получае- мую из разных источников (научно-популярная литература хи- мического содержания, справочные пособия, ресурсы Интерне- та); критически оценивать противоречивую и недостоверную информацию;
- б) умением применять различные методы и запросы при по- иске и отборе информации и соответствующих данных, необхо- димых для выполнения учебных и познавательных задач опре- делённого типа; приобретение опыта в области использования информационно-коммуникативных технологий, овладение культурой активного использования различных поисковых си- стем; самостоятельно выбирать оптимальную форму представ- ления информации и иллюстрировать решаемые задачи не- сложными схемами, диаграммами, другими формами графики и их комбинациями;
- 7) умением использовать и анализировать в процессе учебной и исследовательской деятельности информацию о влиянии про- мышленности, сельского хозяйства и транспорта на состояние окружающей природной среды;

Универсальными коммуникативными действиями

8) умением задавать вопросы (в ходе диалога и/или дискуссии) по существу обсуждаемой темы, формулировать свои предложения относительно

выполнения предложенной задачи;

- 9) приобретение опыта презентации результатов выполнения химического эксперимента (лабораторного опыта, лабораторной работы по исследованию свойств веществ, учебного проек- та);
- 10) заинтересованность в совместной со сверстниками познавательной и исследовательской деятельности при решении воз- никающих проблем на основе учёта общих интересов и согласования позиций (обсуждения, обмен мнениями, «мозговые штурмы», координация совместных действий, определение критериев по оценке качества выполненной работы и др.);

Универсальными регулятивными действиями

- 11) умением самостоятельно определять цели деятельности, планировать, осуществлять, контролировать и при необходи- мости корректировать свою деятельность, выбирать наиболее эффективные способы решения учебных и познавательных за- дач, самостоятельно составлять или корректировать предложенный алгоритм действий при выполнении заданий с учётом получения новых знаний об изучаемых объектах веществах и реакциях; оценивать соответствие полученного результата заявленной цели;
- 12) умением использовать и анализировать контексты, предлагаемые в условии заданий.

Предметные результаты

В составе предметных результатов по освоению обязательно- го содержания, установленного данной примерной рабочей про- граммой, выделяют: освоенные обучающимися научные зна- ния, умения и способы действий, специфические для предмет- ной области «Химия», виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных и новых ситуациях.

Предметные результаты представлены по годам обучения и отражают сформированность у обучающихся следующих уме- ний:

8 КЛАСС

- 1) раскрывать смысл основных химических понятий: атом, молекула, химический элемент, простое вещество, сложное ве- щество, смесь (однородная и неоднородная), валентность, от- носительная атомная и молекулярная масса, количество веще- ства, моль, молярная масса, массовая доля химического элемента в соединении, молярный объём, оксид, кислота, основание, соль, электроотрицательность, степень окисления, химическая реакция, классификация реакций: реакции соеди- нения, реакции разложения, реакции замещения, реакции об- мена, экзо- и эндотермические реакции; тепловой эффект реак- ции; ядро атома, электронный слой атома, атомная орбиталь, радиус атома, химическая связь, полярная и неполярная кова- лентная связь, ионная связь, ион, катион, анион, раствор, мас- совая доля вещества (процентная концентрация) в растворе;
- 2) иллюстрировать взаимосвязь основных химических по- нятий (см. п. 1) и применять эти понятия при описании веществ и их превращений;
- 3) использовать химическую символику для составления формул веществ и уравнений химических реакций;

- 4) определять валентность атомов элементов в бинарных сое- динениях; степень окисления элементов в бинарных соединени- ях; принадлежность веществ к определённому классу соедине- ний по формулам; вид химической связи (ковалентная и ион- ная) в неорганических соединениях;
- 5) раскрывать смысл Периодического закона Д . И . Менделе- ева: демонстрировать понимание периодической зависимости свойств химических элементов от их положения в Периодиче- ской системе; законов сохранения массы веществ, постоянства состава, атомно-молекулярного учения, закона Авогадро; опи сывать и характеризовать табличную форму Периодической системы химических элементов: различать понятия «главная подгруппа (А-группа)» и «побочная подгруппа (Б-группа)», ма- лые и большие периоды; соотносить обозначения, которые имеются в таблице «Периодическая система химических эле- ментов Д . И . Менделеева» с числовыми характеристиками строения атомов химических элементов (состав и заряд ядра, общее число электронов и распределение их по электронным слоям);
- 6) классифицировать химические элементы; неорганические вещества; химические реакции (по числу и составу участвующих в реакции веществ, по тепловому эффекту);
- 7) характеризовать (описывать) общие химические свой- ства веществ различных классов, подтверждая описание приме- рами молекулярных уравнений соответствующих химических реакций;
- 8) прогнозировать свойства веществ в зависимости от их ка- чественного состава; возможности протекания химических пре- вращений в различных условиях;
- 9) вычислять относительную молекулярную и молярную массы веществ; массовую долю химического элемента по фор- муле соединения; массовую долю вещества в растворе; прово- дить расчёты по уравнению химической реакции;
- 10) применять основные операции мыслительной деятельно- сти анализ и синтез, сравнение, обобщение, систематизацию, классификацию, выявление причинно-следственных связей для изучения свойств веществ и химических реакций; есте- ственно-научные методы познания наблюдение, измерение, моделирование, эксперимент (реальный и мысленный);
- 11) следовать правилам пользования химической посудой и лабораторным оборудованием, а также правилам обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов по получению и собиранию газообразных веществ (водорода и кислорода), приготовлению растворов с определённой массовой долей растворённого вещества; планировать и проводить химические эксперименты по распознаванию растворов щелочей и кислот с помощью индикаторов (лакмус, фенолфталеин, метилоранж и др.).

9 КЛАСС

1) раскрывать смысл основных химических понятий: хими- ческий элемент, атом, молекула, ион, катион, анион, простое вещество, сложное вещество, валентность, электроотрицательность, степень окисления, химическая реакция, химическая связь, тепловой эффект реакции, моль, молярный объём, раствор; электролиты, неэлектролиты, электролитическая диссоциация, реакции

ионного обмена, катализатор, химическое равновесие, обратимые и необратимые реакции, окислитель- но-восстановительные реакции, окислитель, восстановитель, окисление и восстановление, аллотропия, амфотерность, химическая связь (ковалентная, ионная, металлическая), кристал- лическая решётка, коррозия металлов, сплавы; скорость химической реакции, предельно допустимая концентрация (ПДК) вещества;

- 2) иллюстрировать взаимосвязь основных химических по- нятий (см. п. 1) и применять эти понятия при описании веществ и их превращений;
- 3) использовать химическую символику для составления формул веществ и уравнений химических реакций;
- 4) определять валентность и степень окисления химических элементов в соединениях различного состава; принадлежность веществ к определённому классу соединений по формулам; вид химической связи (ковалентная, ионная, металлическая) в не- органических соединениях; заряд иона по химической форму- ле; характер среды в водных растворах неорганических соеди- нений, тип кристаллической решётки конкретного вещества;
- 5) раскрывать смысл Периодического закона Д. И. Менделе- ева и демонстрировать его понимание: описывать и характеризовать табличную форму Периодической системы химиче- ских элементов: различать понятия «главная подгруппа (А-группа)» и «побочная подгруппа (Б-группа)», малые и боль- шие периоды; соотносить обозначения, которые имеются в пе- риодической таблице, с числовыми характеристиками строе- ния атомов химических элементов (состав и заряд ядра, общее число электронов и распределение их по электронным слоям); объяснять общие закономерности в изменении свойств элемен- тов и их соединений в пределах малых периодов и главных под- групп с учётом строения их атомов;
- 6) классифицировать химические элементы; неорганиче- ские вещества; химические реакции (по числу и составу уча- ствующих в реакции веществ, по тепловому эффекту, по изме- нению степеней окисления химических элементов);
- 7) характеризовать (описывать) общие и специфические химические свойства простых и сложных веществ, подтверж- дая описание примерами молекулярных и ионных уравнений соответствующих химических реакций;
- 8) составлять уравнения электролитической диссоциации кислот, щелочей и солей; полные и сокращённые уравнения ре- акций ионного обмена; уравнения реакций, подтверждающих существование генетической связи между веществами различ- ных классов;
- 9) раскрывать сущность окислительно-восстановительных реакций посредством составления электронного баланса этих реакций;
- 10) прогнозировать свойства веществ в зависимости от их строения; возможности протекания химических превращений в различных условиях;

26 Примерная рабочая программа

11) вычислять относительную молекулярную и молярную массы веществ; массовую долю химического элемента по фор- муле соединения; массовую долю вещества в растворе; прово- дить расчёты по уравнению химической реакции;

- 12) следовать правилам пользования химической посудой и лабораторным оборудованием, а также правилам обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов по получению и собиранию газообразных веществ (аммиака и углекислого газа);
- 13) проводить реакции, подтверждающие качественный со- став различных веществ: распознавать опытным путём хлорид- бромид-, иодид-, карбонат-, фосфат-, силикат-, сульфат-, ги- дроксид-ионы, катионы аммония и ионы изученных металлов, присутствующие в водных растворах неорганических веществ;
- 14) применять основные операции мыслительной деятельно- сти анализ и синтез, сравнение, обобщение, систематизацию, выявление причинно-следственных связей для изучения свойств веществ и химических реакций; естественно-научные методы познания наблюдение, измерение, моделирование, эксперимент (реальный и мысленный).

Тематическое планирование по курсу «Химия 8 класс»

№ п\п	Наименование темы	Количество- часов	из них	
			практ. работы	контр. работы
1	Введение. Первоначальные химические понятия	8	1	1
2	Тема 1. Атомы химических элементов	9	-	1
3	Тема 2. Простые вещества	7	-	1
4	Тема 3. Соединения химических элементов	14	2	1
5	Тема 4. Изменения, происходящие с веществами	11	-	1
6	Тема 5. Растворение. Растворы. Свойства растворов электролитов	18	2	1
	Промежуточная аттестация. Итоговая контрольная работа.	1		1
	Всего часов	68	5	6